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Abstract. An irreducible Hamiltonian BRST–anti-BRST treatment of reducible first-class
systems based on homological arguments is proposed. The general formalism is exemplified
on the Freedman–Townsend model.

1. Introduction

The BRST formalism has been extended over the last few years to a more symmetrical
approach, called the BRST–anti-BRST method. This type of extended BRST symmetry
has been implemented at the Hamiltonian [1–6], as well as at the Lagrangian level [6–19].
Although it does not play such an important role as the BRST symmetry itself, the BRST–
anti-BRST symmetry is, however, a useful tool in the geometric (superfield) description of
the BRST transformation, for the perturbative investigation of the renormalizability of Yang–
Mills theories, in a consistent approach to anomalies or for a correct understanding of the
non-minimal sector from the BRST treatment [20–26]. The BRST–anti-BRST method can be
equally used to investigate irreducible and reducible gauge theories or Hamiltonian systems
possessing irreducible and reducible first-class constraints. Nevertheless, the Hamiltonian
BRST–anti-BRST treatment of reducible first-class systems turns out to be a complicated
mechanism, due, in principal, to the additional redundancy of the constraint functions implied
by the inner structure of the BRST–anti-BRST symmetry. This makes the computation of
the total BRST charge and BRST–anti-BRST-invariant Hamiltonian, and especially of the
gauge-fixed action, a more difficult task than in the irreducible case.

In this paper we give an irreducible Hamiltonian BRST–anti-BRST treatment of on-shell
reducible first-class theories that somehow simplifies the standard reducible approach. Our
treatment is mainly based on the following steps:

(a) we transform the original reducible first-class constraints into some irreducible ones on
a larger phase-space in a manner that allows the substitution of the Hamiltonian BRST–
anti-BRST symmetry of the reducible system by that of the irreducible theory;

(b) we quantize the irreducible system accordingly with the Hamiltonian BRST–anti-BRST
formalism.

This programme will lead to the removal of all ghosts for ghosts and antighosts associated
with the original reducibility. The idea of replacing a redundant theory with an irreducible
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one is not new [1, 27], and has recently been developed at the antifield BRST level for both
Lagrangian gauge theories and Hamiltonian first-class systems [28]. The same idea has also
been approached within the framework of the Lagrangian BRST–anti-BRST context [29], but it
has neither been consistently developed, nor yet applied to the Hamiltonian BRST–anti-BRST
approach to on-shell reducible first-class systems, hence our paper establishes a new result.

The paper is organized into six sections. Section 2 realizes a brief review of the
Hamiltonian BRST–anti-BRST formalism for reducible first-class systems. Section 3 is
focused on the derivation of an irreducible Koszul–Tate bicomplex associated with a reducible
theory. This Koszul–Tate bicomplex is inferred from the requirement that all non-trivial co-
cycles at total resolution degree one from the reducible approach exclusively due to the original
redundancy become trivial under a proper redefinition of the antighosts with total resolution
degree equal to one. This will underline an irreducible first-class constraint set corresponding
to the initial reducible one. Section 4 is concerned with the construction of the Hamiltonian
BRST–anti-BRST symmetry of the irreducible theory. In the meantime, we establish the
link with the reducible BRST–anti-BRST symmetry and show that it is permissible to replace
the Hamiltonian BRST–anti-BRST symmetry of the initial reducible system with that of the
irreducible theory. In section 5 we apply the theoretical part of the paper to the Freedman–
Townsend model. Section 6 ends the paper with the main conclusions.

2. Hamiltonian BRST–anti-BRST symmetry for reducible first-class systems

In this section we give a brief review of the Hamiltonian BRST–anti-BRST symmetry for
reducible first-class systems. Our starting point is a Hamiltonian system on a phase-space
described locally by N bosonic coordinates zA, subject to the first-class constraints

� : Ga0

(
zA
) ≈ 0 a0 = 1, . . . ,M0 (1)

which are assumed to be on-shell L-stage reducible. We presume that the second-class
constraints (if any) have been eliminated by means of the Dirac bracket. The first-class
behaviour of the constraints is translated into[

Ga0 ,Gb0

] = C
c0
a0b0
Gc0 (2)

while the on-shell redundancy is written as

Za0
a1
Ga0 = 0 a1 = 1, . . . ,M1 (3)

Za1
a2
Za0

a1
= Ca0b0

a2
Gb0 a2 = 1, . . . ,M2 (4)

...

ZaL−1
aLZ

aL−2
aL−1 = CaL−2b0

aL
Gb0 aL = 1, . . . ,ML (5)

where the symbol [ , ] denotes either the Poisson bracket, or the Dirac bracket if any second-
class constraints were present. All the functions in (2)–(5) may involve the phase-space
coordinates, while the coefficients Ca0b0

a2
and the first-order structure functions Cc0

a0b0
are

antisymmetric in the upper, respectively, lower indices. The analysis is performed in the
bosonic case, but can be easily extended to fermions by introducing some appropriate sign
factors.

The Hamiltonian BRST–anti-BRST symmetry for such a reducible system is given by two
anticommuting differentials

sRasRb + sRbsRa = 0 a, b = 1, 2 (6)



Hamiltonian BRST–anti-BRST symmetry 6903

that can be made to split as

sRa = δRa +DRa + · · · a = 1, 2. (7)

The operators (δRa)a=1,2 generate the Koszul–Tate differential bicomplex, which is bigraded
accordingly the resolution bidegree bires = (res1, res2), and furnishes a homological
biresolution of smooth functions defined on the first-class surface (1), C∞(�). (DRa)a=1,2 are
known as longitudinal exterior derivatives and provide the extended longitudinal bicomplex
bigraded via the form bidegree biform = (

form1, form2

)
, which offers a redundant description

of the tangent space to the gauge orbits. We set, as usual, bires (δR1) = (−1, 0),
bires (δR2) = (0,−1), biform (DR1) = (1, 0), biform (DR2) = (0, 1), bires (DR1) = (0, 0),
bires (DR2) = (0, 0). The remaining terms in (sRa)a=1,2, generically denoted by ‘· · ·’,
are required in order to ensure the BRST–anti-BRST algebra defining relations (6). The
generators of the Koszul–Tate bicomplex are known as antighosts, while those from the exterior
longitudinal bicomplex are called ghosts. The operators sR1 and sR2 constitute the basic
ingredients of the BRST–anti-BRST differential bicomplex, with the bigrading given by the
new ghost bidegree bingh = (

ngh1, ngh2

)
defined like(

ngh1, ngh2

) = (
form1 − res1, form2 − res2

)
(8)

which is such that bingh (sR1) = (1, 0) and bingh (sR2) = (0, 1). Consequently, we have
that bingh (δR1) = (1, 0), bingh (δR2) = (0, 1), bingh (DR1) = (1, 0), bingh (DR2) = (0, 1).
The crucial property of this double complex is that the zeroth-order cohomology spaces of sR1

and sR2 are isomorphic to the algebra of physical observables (the algebra of gauge-invariant
functions defined on (1)). Finally, a word on the relationship between the BRST–anti-BRST and
BRST symmetries. It has been shown [5] that the Hamiltonian BRST–anti-BRST symmetry
for an arbitrary Hamiltonian first-class system exists provided the standard Hamiltonian BRST
symmetry for the system can be properly constructed. Actually, the sum between the BRST
and anti-BRST operators (total BRST transformation)

sR = sR1 + sR2 (9)

defines a simple BRST complex associated with a complete description of the first-class surface
(1) obtained by doubling the first-class constraints, which is graded accordingly as the new
ghost number ngh = ngh1 + ngh2 (ngh (sR) = 1). Accordingly, we have that the total BRST
symmetry splits in the usual way as

sR = δR +DR + · · · (10)

where

δR = δR1 + δR2 (11)

gives a simple Koszul–Tate complex graded by the total resolution degree res = res1 + res2

(res (δR) = −1), that realizes a homological resolution of smooth functions defined on (1)
corresponding to the redundant description of this first-class surface, the operator

DR = DR1 +DR2 (12)

leads to a simple exterior longitudinal complex graded by the total form degree form =
form1 + form2 (form (DR) = 1, res (DR) = 0), which offers a redundant description of the
tangent space to the gauge orbits, and the rest of the terms ‘· · ·’ ensure the nilpotency of sR

s2
R = 0. (13)
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Of course, the zeroth-order cohomology space of the total BRST transformation is again
isomorphic to the algebra of physical observables

H 0(sR) � {physical observables}. (14)

The link between the new ghost bidegree and the usual ghost number (gh) from the standard
Hamiltonian BRST formalism is expressed by gh = ngh1 − ngh2.

After this brief review on the main ideas underlying the Hamiltonian BRST–anti-BRST
formalism, we analyse the basic steps in the construction of the Koszul–Tate bicomplex, which
should be performed in such a way as to comply with the essential requirements, which are
the nilpotency and anticommutivity of (δRa)a=1,2

δRaδRb + δRbδRa = 0 a, b = 1, 2 (15)

together with the conditions that define the biresolution property

H0,0(δRa) = C∞(�) a = 1, 2 (16)

Hj,k(δRa) = 0 j, k � 0 j + k 	= 0 a = 1, 2 (17)

whereHj,k(δRa) denotes the space of elements with the resolution bidegree equal to (j, k) that
are δRa-closed modulo δRa-exact (in the following we will suggestively refer to (17) as the
‘biacyclicity conditions’). In the case of a first-stage reducible Hamiltonian system (L = 1),
subject to the first-class constraints (1) and the reducibility relations (3), we introduce the
antighost spectrum [5](

[1,0]
P1a0 ,

[0,1]
P2a0

) (
[2,0]
P 1a1 ,

[1,1]
P 2a1 ,

[0,2]
P 3a1 ,

[1,1]
λa0

)
(18)

(
[2,1]
ρ 1a1 ,

[1,2]
ρ 2a1

)
(19)

where
[m,n]
F signifies an object with bires(F ) = (m, n). The relation between bingh and bires

in the case of all variables from the antighost spectrum is bingh = (−res1,−res2). The proper
definitions of (δRa)a=1,2 acting on the generators from the Koszul–Tate bicomplex are given
by

δR1
[0,0]
z
A

= 0 δR2
[0,0]
z
A

= 0 (20)

δR1
[1,0]
P1a0 = −Ga0 δR2

[1,0]
P1a0 = 0 (21)

δR1
[0,1]
P2a0 = 0 δR2

[0,1]
P2a0 = −Ga0 (22)

δR1
[2,0]
P 1a1 = −[1,0]

P1a0Z
a0
a1

δR2
[2,0]
P 1a1 = 0 (23)

δR1
[1,1]
P 2a1 = 1

2

[0,1]
P2a0Z

a0
a1

δR2
[1,1]
P 2a1 = 1

2

[1,0]
P1a0Z

a0
a1

(24)

δR1
[0,2]
P 3a1 = 0 δR2

[0,2]
P 3a1 = −[0,1]

P2a0Z
a0
a1

(25)

δR1
[1,1]
λa0 = −[0,1]

P2a0 δR2
[1,1]
λa0 = [1,0]

P 1a0 (26)

δR1
[2,1]
ρ 1a1 = − [1,1]

P 2a1 − 1

2

[1,1]
λa0Z

a0
a1

δR2
[2,1]
ρ 1a1 = − [2,0]

P 1a1 (27)



Hamiltonian BRST–anti-BRST symmetry 6905

δR1
[1,2]
ρ 2a1 = − [0,2]

P 3a1 δR2
[1,2]
ρ 2a1 = − [1,1]

P 2a1 +
1

2

[1,1]
λa0Z

a0
a1

(28)

and ensure the basic conditions (15)–(17). For a second-stage first-class Hamiltonian theory
(L = 2) described by the constraints (1) and the reducibility relations (3) and (4), one needs
to supplement the antighost spectrum (18) and (19) with the antighosts(

[3,0]
P 1a2 ,

[2,1]
P 2a2 ,

[1,2]
P 3a2 ,

[0,3]
P 4a2

)
,

(
[3,1]
ρ 1a2 ,

[2,2]
ρ 2a2 ,

[1,3]
ρ 3a2

)
(29)

and set the definitions (20)–(28) together with

δR1
[3,0]
P 1a2 = − [2,0]

P 1a1Z
a1
a2

+
1

2
Ca0b0
a2

[1,0]
P1a0

[1,0]
P1b0 δR2

[3,0]
P 1a2 = 0 (30)

δR1
[2,1]
P 2a2 = 1

2

[1,1]
P 2a1Z

a1
a2

+
1

4
Ca0b0
a2

[1,0]
P1a0

[0,1]
P2b0 (31)

δR2
[2,1]
P 2a2 = −1

2

[2,0]
P 1a1Z

a1
a2

+
1

4
Ca0b0
a2

[1,0]
P1a0

[1,0]
P1b0 (32)

δR1
[1,2]
P 3a2 = 1

2

[0,2]
P 3a1Z

a1
a2

− 1

4
Ca0b0
a2

[0,1]
P2a0

[0,1]
P2b0 (33)

δR2
[1,2]
P 3a2 = −1

2

[1,1]
P 2a1Z

a1
a2

− 1

4
Ca0b0
a2

[1,0]
P1a0

[0,1]
P2b0 (34)

δR1
[0,3]
P 4a2 = 0 δR2

[0,3]
P 4a2 = − [0,2]

P 3a1Z
a1
a2

+
1

2
Ca0b0
a2

[0,1]
P2a0

[0,1]
P2b0 (35)

δR1
[3,1]
ρ 1a2 = − [2,1]

P 2a2 − 1

2

[2,1]
ρ 1a1Z

a1
a2

+
1

4
Ca0b0
a2

[1,1]
λa0

[1,0]
P1b0 (36)

δR2
[3,1]
ρ 1a2 = [3,0]

P 1a2 (37)

δR1
[2,2]
ρ 2a2 = − [1,2]

P 3a2 − 1

2

[1,2]
ρ 2a1Z

a1
a2

− 1

4
Ca0b0
a2

[1,1]
λa0

[0,1]
P2b0 (38)

δR2
[2,2]
ρ 2a2 = − [2,1]

P 2a2 +
1

2

[2,1]
ρ 1a1Z

a1
a2

− 1

4
Ca0b0
a2

[1,1]
λa0

[1,0]
P1b0 (39)

δR1
[1,3]
ρ 3a2 = − [0,3]

P 4a2 (40)

δR2
[1,3]
ρ 3a2 = − [1,2]

P 3a2 +
1

2

[1,2]
ρ 2a1Z

a1
a2

+
1

4
Ca0b0
a2

[1,1]
λa0

[0,1]
P2b0 (41)

in order to obtain (15)–(17). Similarly, in the general case of anL-stage reducible Hamiltonian
system possessing the first-class constraints (1) and subject to the reducibility relations (3)–(5),
the Koszul–Tate bicomplex includes the generators(

[1,0]
P1a0 ,

[0,1]
P2a0

)
(42)

(
[2,0]
P 1a1 ,

[1,1]
P 2a1 ,

[0,2]
P 3a1 ,

[1,1]
λa0

)
(43)

(
[k+1,0]
P 1ak ,

[k,1]
P 2ak , . . . ,

[0,k+1]
P (k+2)ak ,

[k,1]
ρ 1ak−1 ,

[k−1,2]
ρ 2ak−1 , . . . ,

[1,k]
ρkak−1

)
(44)

(
[L+1,1]
ρ1aL,

[L,2]
ρ 2aL, . . . ,

[1,L+1]
ρ(L+1)aL

)
(45)
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with k = 2, . . . , L, on which (δRa)a=1,2 act in a way that complies with (15)–(17). We note
that the antighosts (42)–(45) are organized on levels of increasing total resolution degree, all
the antighosts in say (44) displaying the same resolution degree, k + 1.

3. Irreducible Koszul–Tate bicomplex

Here, we investigate the possibility of associating an irreducible Koszul–Tate bicomplex with
the initial reducible one. By ‘irreducible Koszul–Tate bicomplex’ we understand a double
complex underlying some irreducible first-class constraints, and hence whose redundancy is
dictated only by the reducibility relations resulting from the doubling of constraint functions.
The cornerstone of our approach relies on redefining the antighosts (42) of total resolution
degree one such that all the co-cycles of (δRa)a=1,2 at total resolution degree one due exclusively
to the original reducibility relations (3)–(5) become trivial (either identically vanish or are
made exact). Then, all the corresponding higher-order resolution degree antighosts will be

eliminated from the antighost spectrum, which will retain only the generators
[1,0]
P1a0 ,

[0,1]
P2a0 and

[1,1]
λa0 from the reducible treatment. Consequently, we expect the phase-space and antighost

spectrum to be modified in order to furnish a biresolution of smooth functions defined on the
surface of irreducible first-class constraints, but only up to some new bosonic canonical pairs,
respectively, antighosts of resolution bidegrees (1, 0), (0, 1) or (1, 1). For the sake of clarity,
we initially analyse the cases L = 1, 2, and then generalize the results to an arbitrary L.

3.1. First-stage reducible theories

We begin with a first-stage reducible set of first-class constraints (L = 1), described by
the formulae (1)–(3). The reducible Koszul–Tate bicomplex is then fully determined by the
generators (18) and (19), and the definitions (20)–(28). The co-cycles of (δRa)a=1,2 at total
resolution degree one caused by the initial redundancy relations (3) are obviously given by

µ1
a1

= [1,0]
P1a0Z

a0
a1

µ2
a1

= [0,1]
P2a0Z

a0
a1
. (46)

Our main concern is to investigate whether or not it is possible to perform a transformation of
the type(

[1,0]
P1a0 ,

[0,1]
P2a0

)
→
(

[1,0]

P ′
1a0 ,

[0,1]

P ′
2a0

)
=
(

[1,0]
P1b0

[0,0]
M

b0

a0
,

[0,1]
P2b0

[0,0]
N

b0

a0

)
(47)

that makes the new co-cycles of the type (46) trivial. The above redefinition of the antighosts is
such as to preserve the original resolution bidegrees. Thus, the matricesM and N can depend
at most on the phase-space variables, zA. Taking into account the symmetry between the BRST
and anti-BRST components present everywhere in the development of the BRST–anti-BRST
formalism, it is natural to take

[0,0]
M

b0

a0
= [0,0]
N

b0

a0
≡ T b0

a0
. (48)

If we impose on the matrix T b0
a0

the conditions

T b0
a0
Gb0 = Ga0 T b0

a0
Za0

a1
≡ 0 (49)

and multiply the former definitions in (21) and the latter ones in (22) by T b0
a0

, we obtain

δ1

[1,0]

P ′
1a0 = −Ga0 δ2

[0,1]

P ′
2a0 = −Ga0 . (50)
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The formulae (50) will lead to some co-cycles of the type (46), i.e.

µ′1
a1

=
[1,0]

P ′
1a0Z

a0
a1

µ′2
a1

=
[0,1]

P ′
2a0 Z

a0
a1

(51)

that are found to be trivial (µ′1
a1

≡ 0, µ′2
a1

≡ 0) thanks to the latter condition in (49). In this
way, it results that the co-cycles (51) are trivial as long as equations (49) possess solutions.
The solution to (49) is

T b0
a0

= δb0
a0

− Z
b0
b1
D̄b1

a1
Aa0

a1 (52)

where the functions Aa0
a1 can at most involve zA and are taken to satisfy

rank(Za0
a1
Aa0

b1) ≡ rank(Db1
a1
) = M1 (53)

with D̄b1
a1

denoting the inverse of Db1
a1

= Za0
a1
Aa0

b1 . Furthermore, as µ′1
a1

and µ′2
a1

are

no longer co-cycles, the antighosts
[2,0]
P 1a1 ,

[1,1]
P 2a1 ,

[0,2]
P 3a1 will be discarded from the antighost

spectrum (18), which consequently implies the removal of
[2,1]
ρ 1a1 ,

[1,2]
ρ 2a1 from (19). In order

to outline the irreducibility of the resulting Koszul–Tate bicomplex, in (50) we employed the
notation δa instead of δRa . Obviously, the complete actions of the BRST and anti-BRST

Koszul–Tate operators on the new generators
[1,0]
P ′

1a0 and
[0,1]
P ′

2a0 are realized as

δ1

[1,0]

P ′
1a0 = −Ga0 δ2

[1,0]

P ′
1a0 = 0 (54)

δ1

[0,1]

P ′
2a0 = 0 δ2

[0,1]

P ′
2a0 = −Ga0 . (55)

Inserting the relations (47) and (52) in formulae (54) and (55), we deduce that (54) and (55)
are equivalent to

δ1
[1,0]
P1a0 = −Ga0 + δ1

(
Aa0

a1D̄b1
a1
Z
b0
b1

[1,0]
P1b0

)
δ2

[1,0]
P1a0 = 0 (56)

δ1
[0,1]
P2a0 = 0 δ2

[0,1]
P2a0 = −Ga0 + δ2

(
Aa0

a1D̄b1
a1
Z
b0
b1

[0,1]
P2b0

)
. (57)

Our next concern is to determine the structure of the irreducible first-class constraints
constituting the core of this irreducible bicomplex. In this light, we enlarge the phase-space
by adding some new bosonic canonical pairs zA1 ≡ (

ya1 , πa1

)
with resolution bidegree (0, 0),

whose momenta are restricted to be non-vanishing solutions to the equations

Db1
a1
πb1 = δ1

(
−Zb0

a1

[1,0]
P1b0

)
(58)

Db1
a1
πb1 = δ2

(
−Zb0

a1

[0,1]
P2b0

)
(59)

and on which (δa)a=1,2 are set to act like

δ1z
A1 = 0 δ2z

A1 = 0. (60)

On account of the invertibility ofDb1
a1

, the non-vanishing solutions to equations (58) and (59)
ensure the irreducibility as these equations possess non-vanishing solutions if and only if (46)
are no longer closed, and hence not co-cycles. Substituting (58) and (59) into (56) and (57),
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it follows that the actions of the irreducible Koszul–Tate differentials on the initial generators
with total resolution degree one are given by

δ1
[1,0]
P1a0 = −Ga0 − Aa0

a1πa1 δ2
[1,0]
P1a0 = 0 (61)

δ1
[0,1]
P2a0 = 0 δ2

[0,1]
P2a0 = −Ga0 − Aa0

a1πa1 (62)

which offer us the concrete form of the searched for irreducible constraints like

γa0 ≡ Ga0 + Aa0
a1πa1 ≈ 0. (63)

The first-class behaviour of the new constraints results from (63), which, after some obvious
computation, produce

πa1 = D̄b1
a1
Z
b0
b1
γb0 Ga0 =

(
δb0

a0
− Z

b0
b1
D̄b1

a1
Aa0

a1

)
γb0 (64)

which consequently yield[
γa0 , γb0

] = C̄
c0
a0b0
γc0 (65)

for some C̄c0
a0b0

.
In conclusion, we passed from the initial reducible Koszul–Tate bicomplex associated with

the first-stage reducible first-class constraints (1) to an irreducible one, based on the generators(
[0,0]
z
A

,
[0,0]
z
A1
) (

[1,0]
P1a0 ,

[0,1]
P2a0

) (
[1,1]
λa0

)
(66)

and the definitions

δ1z
A = 0 δ2z

A = 0 δ1z
A1 = 0 δ2z

A1 = 0 (67)

δ1
[1,0]
P1a0 = −γa0 δ2

[1,0]
P1a0 = 0 (68)

δ1
[0,1]
P2a0 = 0 δ2

[0,1]
P2a0 = −γa0 (69)

δ1
[1,1]
λa0 = −[0,1]

P2a0 δ2
[1,1]
λa0 = [1,0]

P1a0 (70)

where the irreducible first-class constraint functions γa0 are expressed by (63). It can be simply
checked that the relations (67)–(70) define a correct Koszul–Tate bicomplex, that satisfies the
basic requirements (15)–(17), with δRa and C∞(�) replaced by δa , respectively, C∞ (

�′),
where �′ : γa0 ≈ 0.

At this moment it is important to make two essential remarks. Firstly, the number of
physical degrees of freedom is kept unchanged when passing to the irreducible setting. This is
because in the reducible case there are N canonical variables and M0 −M1 independent first-
class constraints, and hence N

2 −M0 +M1 physical degrees of freedom, while in the irreducible
situation there areN +2M1 canonical variables andM0 independent first-class constraints, and
therefore as many physical degrees of freedom as in the reducible version. Secondly, from
(58) and (59) it results (due to the invertibility of Db1

a1
) that the momenta πa1 are both δ1- and

δ2-exact. These observations represent two main conditions to also be imposed in connection
with higher-order reducible Hamiltonian systems. Actually, we will see that for higher-order
reducible theories it will be necessary to further add some bosonic canonical variables with the
resolution bidegrees (0, 0) or (1, 1), and some fermionic antighosts of total resolution degree
one. The former condition is directly correlated to the number of new canonical pairs and
first-class constraints needed within the irreducible framework, while the latter implements
the existence of a proper redefinition of the antighosts with total resolution degree one that
renders trivial the co-cycles from the reducible approach.
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3.2. Second-stage reducible theories

In this situation we start from an on-shell second-stage reducible set of first-class constraints
(L = 2), pictured by the formulae (1)–(4). The reducible Koszul–Tate bicomplex is now
generated by (18) and (19) and (29). Obviously, the co-cycles of (δRa)a=1,2 at total resolution
degree one exclusively due to the original reducibility relations (3)–(4) are those appearing
in the first-stage case, namely, (46). We are going to maintain the definitions (67)–(70), with
γ0 given precisely by (63). Still, we have to surpass two obstructions that prevent us from
employing the analysis realized in the case L = 1. Firstly, the matrix Db1

a1
= Za0

a1
Aa0

b1 is
no longer invertible, so formula (52) is meaningless, such that the transformations (47) are
inadequate. This is because Db1

a1
displays on-shell null vectors

Db1
a1
Za1

a2
= Aa0

b1Za0
a1
Za1

a2
= Aa0

b1Ca0b0
a2

Gb0 ≈ 0 (71)

hence now we have that rank(Db1
a1
) = M1 −M2. Under these circumstances, we will see that

there is, however, possible to perform an appropriate redefinition of the antighosts
[1,0]
P1a0 and

[0,1]
P2a0 that brings the constraint functions γa0 to the form (63) and, in the meantime, restores

the triviality of the co-cycles of the type (46). Secondly, we observe that the irreducible
constraint functions (63) cannot ensure a number of physical degrees of freedom in the
irreducible framework equal to the initial one. Rather, they should be supplemented with
M2 new constraints γa2 ≈ 0 such that the entire constraint set is irreducible and first-class.
Accordingly, we have to enrich the resulting irreducible Koszul–Tate bicomplex with the new

antighosts
[1,0]
P1a2 ,

[0,1]
P2a2 and

[1,1]
λa2 and set the corresponding definitions

δ1
[1,0]
P1a2 = −γa2 δ2

[1,0]
P1a2 = 0 (72)

δ1
[0,1]
P2a2 = 0 δ2

[0,1]
P2a2 = −γa2 (73)

δ1
[1,1]
λa2 = −[0,1]

P2a2 δ2
[1,1]
λa2 = [1,0]

P1a2 . (74)

The appearance of the antighosts
[1,1]
λa2 is dictated by the latter and former definitions in (72),

respectively, (73), and is strictly demanded by the supplementary trivial redundancy in the
Hamiltonian BRST–anti-BRST formalism due to the doubling of the constraint functions. In
brief, our programme in the case L = 2 consists in determining some γa2 that restore a correct
irreducible Koszul–Tate bicomplex relying on the definitions (67)–(70) and (72)–(74), and

in further finding a transformation of the antighosts
[1,0]
P1a0 ,

[0,1]
P2a0 (eventually involving the

additional antighosts) that leads to some trivial co-cycles of the type (46) and, at the same
time, is in agreement with (68) and (69).

In order to solve the former problem, we remark that condition (71) enables us to represent
Db1

a1
as

Db1
a1

= δb1
a1

− Z
b1
b2
D̄b2

a2
Aa1

a2 + Aa0
b1Ca0b0

c2
D̄
c2
b2
Aa1

b2Gb0 (75)

where D̄b2
a2

is the inverse ofDb2
a2

= Zc1
a2
Ac1

b2 and Ac1
b2 are some functions that may depend

at most on zA and are taken to fulfil rank(Da2
b2
) = M2. As we have previously stated, we

maintain the definitions (68) and (69), with γa0 as in (63). Then, if we apply Za0
a1

on these
relations, we consequently find

δ1

(
[1,0]
P1a0Z

a0
a1

)
= −πb1D

b1
a1

(76)
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δ2

(
[0,1]
P2a0Z

a0
a1

)
= −πb1D

b1
a1
. (77)

Taking into account the representation (75), formulae (76) and (77) become

δ1

(
[1,0]
P1a0Z

a0
a1

)
= −πa1 + πb1Z

b1
b2
D̄b2

a2
Aa1

a2 − πb1Aa0
b1Ca0b0

c2
Gb0D̄

c2
b2
Aa1

b2 (78)

δ2

(
[0,1]
P2a0Z

a0
a1

)
= −πa1 + πb1Z

b1
b2
D̄b2

a2
Aa1

a2 − πb1Aa0
b1Ca0b0

c2
Gb0D̄

c2
b2
Aa1

b2 (79)

which further yield

δ1

(
[1,0]
P1a0

(
Za0

a1
− Ca0b0

c2
Gb0D̄

c2
b2
Aa1

b2
)) = −πa1 + πb1Z

b1
b2
D̄b2

a2
Aa1

a2 (80)

δ2

(
[0,1]
P2a0

(
Za0

a1
− Ca0b0

c2
Gb0D̄

c2
b2
Aa1

b2
)) = −πa1 + πb1Z

b1
b2
D̄b2

a2
Aa1

a2 . (81)

The latter two relations are implied by (78) and (79) through the antisymmetry of Ca0b0
c2

(from
which it results thatπb1Aa0

b1Ca0b0
c2

Gb0 = γa0C
a0b0
c2

Gb0 ) combined with formulae (67)–(69). The
presence of the second term in the right-hand sides of (80) and (81) shows that the momenta
πa1 are neither δ1-, nor δ2-exact. The most natural choice to surpass this difficulty is to take
the searched for functions γa2 as

γa2 ≡ πb1Z
b1
a2

(82)

such that with the help of (72) and (73) we arrive at

δ1
[1,0]
P1a2 = −πa1Z

a1
a2

δ2
[0,1]
P2a2 = −πa1Z

a1
a2
. (83)

Accordingly, from (80), (81) and (83) we recover the (δa)a=1,2-exactness of these momenta

πa1 = δ1

(
[1,0]
P1a0

(−Za0
a1

+ Ca0b0
c2

Gb0D̄
c2
b2
Aa1

b2
)− [1,0]

P1b2 D̄
b2
a2
Aa1

a2

)
(84)

πa1 = δ2

(
[0,1]
P2a0

(−Za0
a1

+ Ca0b0
c2

Gb0D̄
c2
b2
Aa1

b2
)− [0,1]

P2b2 D̄
b2
a2
Aa1

a2

)
. (85)

In the meantime, as the functions Za1
a2

have no null vectors (the original set of constraints
is by assumption second-stage reducible, so Za1

a2
are supposed to be independent), relations

(83) provoke no non-trivial co-cycles. This solves the former problem set in the above in an
appropriate manner.

Related to the latter problem (the existence of a transformation of the antighosts at total
resolution degree one outputting some trivial co-cycles of the type (46) and being in accordance
with (68) and (69)), we observe that replacing the relations (84) and (85) in the definitions (68)
and (69), with γa0 given by (63), it follows that

δ1

[1,0]

P ′′
1a0 = −Ga0 δ2

[0,1]

P ′′
2a0= −Ga0 (86)

where
[1,0]

P ′′
1a0 = [1,0]

P1a0 − [1,0]
P1b0Z

b0
b1
Aa0

b1

+
[1,0]
P1b0C

b0c0
c2

Gc0D̄
c2
b2
Aa1

b2Aa0
a1− [1,0]

P1b2 D̄
b2
a2
Aa1

a2Aa0
a1 (87)
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[0,1]

P ′′
2a0=

[0,1]
P2a0 − [0,1]

P2b0Z
b0
b1
Aa0

b1

+
[0,1]
P2b0C

b0c0
c2

Gc0D̄
c2
b2
Aa1

b2Aa0
a1− [0,1]

P2b2 D̄
b2
a2
Aa1

a2Aa0
a1 . (88)

After some computation, we gain the triviality of the new co-cycles

µ′′
1a1

=
[1,0]

P ′′
1a0 Z

a0
a1

µ′′
2a1

=
[0,1]

P ′′
2a0 Z

a0
a1

(89)

at total resolution degree one that result from (86), namely,

µ′′
1a1

= δ1

(
1

2

[1,0]

P ′′
1b0

[1,0]

P ′′
1a0 C

a0b0
c2

D̄
c2
b2
Aa1

b2

)
(90)

µ′′
2a1

= δ2

(
1

2

[0,1]

P ′′
2b0

[0,1]

P ′′
2a0 C

a0b0
c2

D̄
c2
b2
Aa1

b2

)
. (91)

Formulae (87) and (88) help us to determine the concrete form of the redefinition under
discussion (

[1,0]
P1a0 ,

[1,0]
P1a2 ,

[0,1]
P2a0 ,

[0,1]
P2a2

)
→
(

[1,0]

P ′′
1a0 ,

[1,0]
P1a2 ,

[0,1]

P ′′
2a0 ,

[0,1]
P2a2

)
(92)

where
[1,0]

P ′′
1a0 = Rb0

a0

[1,0]
P1b0 +Qb2

a0

[1,0]
P1b2 (93)

[0,1]

P ′′
2a0 = Rb0

a0

[0,1]
P2b0 +Qb2

a0

[0,1]
P2b2 (94)

Rb0
a0

= δb0
a0

− Z
b0
b1
Aa0

b1 + Cb0c0
c2

Gc0D̄
c2
b2
Aa1

b2Aa0
a1 Qb2

a0
= −D̄b2

a2
Aa1

a2Aa0
a1 .

(95)

As no non-trivial co-cycles connected with the initial reducibility appear at total resolution
degree one, it follows that there will also be no non-trivial co-cycles correlated to this type
of reducibility at higher resolution degrees. Consequently, the constraints underlying the new
Koszul–Tate bicomplex

γa0 ≡ Ga0 + Aa0
a1πa1 ≈ 0 γa2 ≡ Za1

a2
πa1 ≈ 0 (96)

are truly irreducible. Moreover, they are also first-class as (96) leads, after some computation,
to

πa1 = γa0

(
Za0

a1
− Ca0b0

c2
Gb0D̄

c2
b2
Aa1

b2
)

+ γb2D̄
b2
a2
Aa1

a2 (97)

Ga0 = γb0

(
δb0

a0
− Z

b0
b1
Aa0

b1 + Cb0c0
c2

Gc0D̄
c2
b2
Ab1

b2Aa0
b1

)
− γb2D̄

b2
a2
Aa1

a2Aa0
a1 .

(98)

Evaluating the Poisson brackets among the constraint functions
(
γa0 , γa2

)
with the help of

(97) and (98), we find that they vanish weakly on the surface γa0 ≈ 0, γa2 ≈ 0, hence the
constraints (96) are first-class.

Then, we can conclude that in the case L = 2 we succeeded again in switching from an
original reducible Koszul–Tate bicomplex associated with the second-stage reducible first-class
constraints (1) to an irreducible one, based on the generators(

[0,0]
z
A

,
[0,0]
z
A1
) (

[1,0]
P1a0 ,

[1,0]
P1a2 ,

[0,1]
P2a0 ,

[0,1]
P2a2

) (
[1,1]
λa0 ,

[1,1]
λa2

)
(99)
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and defined by the relations (67)–(70) and (72)–(74), where the irreducible first-class constraint
functions γa0 , γa2 are given in (96). It can be verified directly that the above-mentioned relations
define a correct irreducible Koszul–Tate bicomplex, which agrees with the basic conditions
(15)–(17), with δRa and C∞(�) replaced by δa , respectively, C∞(�′′), where �′′ : γa0 ≈ 0,
γa2 ≈ 0. We cannot stress enough that it is precisely the requirement on the δa-exactness of the
new momenta πa1 which allows us to deduce an appropriate transformation of the antighosts
at total resolution degree one (see (92)–(95)) that enforces the irreducibility.

3.3. Generalization: L-stage reducible theories

Now, after having analysed in detail the construction of an irreducible Koszul–Tate bicomplex
starting with an original first- or second-stage reducible set of first-class constraints, we are
able to generalize our irreducible treatment to some initial on-shell L-stage reducible first-
class constraints, described by relations (1)–(5). Going along the same lines as before, we

enlarge the phase-space with the bosonic canonical pairs
[0,0]
z
A2k+1

= (
ya2k+1 , πa2k+1

)
k=0,...,& and

construct an irreducible Koszul–Tate bicomplex based on the generators(
[0,0]
z
A

,

(
[0,0]
z
A2k+1

)
k=0,...,&

)
,

(
[1,0]
P1a2k ,

[0,1]
P2a2k ,

[1,1]
λa2k

)
k=0,...,'

(100)

and defined by the relations

δaz
A = 0 δaz

A2k+1 = 0 k = 0, . . . , & a = 1, 2 (101)

δ1
[1,0]
P1a2k = −γa2k δ2

[1,0]
P1a2k = 0 k = 0, . . . , ' (102)

δ1
[0,1]
P2a2k = 0 δ2

[0,1]
P2a2k = −γa2k k = 0, . . . , ' (103)

δ1
[1,1]
λa2k = −[0,1]

P2a2k δ2
[1,1]
λa2k =[1,0]

P1a2k k = 0, . . . , ' (104)

which shows the irreducible constraints

γa0 ≡ Ga0 + Aa0
a1πa1 ≈ 0 (105)

γa2k ≡ Za2k−1
a2kπa2k−1 + A a2k+1

a2k
πa2k+1 ≈ 0 k = 1, . . . , '. (106)

The irreducibility is guaranteed by the presence of the functions A ak+1
ak

in (105) and (106),
which may involve at most the original variables zA and are chosen to satisfy the conditions

rank(Dak
bk
) ≈

L∑
i=k
(−)k+iMi k = 1, . . . , L− 1 (107)

rank(DaL
bL
) = ML (108)

where Dak
bk

= Z
ak−1

bkAak−1
ak . Acting like in the cases L = 1, 2, after some computation we

find the relations

πa2k+1 = ν
a2j
a2k+1γa2j k = 0, . . . , & (109)

Ga0 = ν
a2j
a0 γa2j (110)

for some functions ν
a2j
a2k+1 and ν

a2j
a0 . Computing the Poisson brackets among the constraint

functions in (105) and (106), we find that they vanish weakly on the surface (105) and (106),
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hence they form a first-class set. The antighosts of the type
[1,0]
P1a2k or

[0,1]
P2a2k are fermionic,

those denoted by
[1,1]
λa2k are bosonic, while the notations & and ' signify

& =



L− 1

2
for L odd

L

2
− 1 for L even

' =



L− 1

2
for L odd

L

2
for L even.

(111)

In order to avoid confusion, we use the conventions f ak = 0 if k < 0 or k > L.
With these elements at hand, it is obviously that the Koszul–Tate operators satisfy the

fundamental requirements (15)–(17), with δRa and C∞(�) replaced by δa , respectively,
C∞ (

�̄
)
, where

�̄ : γa2k ≈ 0 k = 0, . . . , '. (112)

This ends the general construction of an irreducible Koszul–Tate bicomplex associated with
the original on-shell L-stage reducible Hamiltonian system.

4. Irreducible Hamiltonian BRST–anti-BRST symmetry

4.1. Construction of the irreducible Hamiltonian BRST–anti-BRST symmetry

Once we have accomplished the construction of the Koszul–Tate bicomplex based on the
irreducible first-class constraints (105) and (106), it is natural to derive the irreducible
Hamiltonian BRST–anti-BRST symmetry associated with this constraint set. The BRST
and anti-BRST operators (sa)a=1,2 corresponding to this irreducible first-class set should
anticommute

sasb + sbsa = 0 a, b = 1, 2 (113)

with each of the two differentials splitting as

sa = δa +Da + · · · a = 1, 2 (114)

where (δa)a=1,2 generate the irreducible Koszul–Tate bicomplex, (Da)a=1,2 define the
irreducible exterior longitudinal bicomplex, and the other terms (if necessary), generically
denoted by ‘· · ·’, implement the anticommutation relations (113). The construction of the
irreducible Koszul–Tate bicomplex has been elucidated in the previous subsections. With
regard to the irreducible exterior longitudinal bicomplex, we remark that its generators are
given by (

{0,0}
z
A

,

(
{0,0}
z
A2k+1

)
k=0,...,&

) ({1,0}
η

a2k

1 ,
{0,1}
η

a2k

2 ,
{1,1}
Q

a2k)
k=0,...,'

(115)

where
{1,0}
η

a2k

1 ,
{0,1}
η

a2k

2 are fermionic,
{1,1}
Q

a2k

are bosonic, and
{m,n}
F represents an element of form

bidegree biform(F ) = (m, n). For notational simplicity, we redenote the first-class constraints
(105) and (106) by γ.̄ ≡ (

γa2k

)
k=0,...,' ≈ 0, such that we can equivalently rewrite the ghost

spectrum in (115) like
{1,0}
η

.̄

1 ,
{0,1}
η

.̄

2 ,
{1,1}
Q

.̄

. Due on the one hand to the first-class character of
the constraints (105) and (106)[

γ.̄, γ.̄′
] = C.̄

′′
.̄.̄′γ.̄′′ (116)
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where C.̄
′′

.̄.̄′ denote the first-order structure functions, and on the other hand, to their
irreducibility, it follows that the actions of (Da)a=1,2 on the generators from the exterior
longitudinal bicomplex are completely defined through the relations

D1

{0,0}
F =

[{0,0}
F , γ.̄

] {1,0}
η

.̄

1 D2

{0,0}
F =

[{0,0}
F , γ.̄

] {0,1}
η

.̄

2 (117)

D1
{1,0}
η

.̄

1 = 1

2
C.̄
.̄′.̄′′

{1,0}
η

.̄′

1

{1,0}
η

.̄′′

1 (118)

D2
{1,0}
η

.̄

1 =
{1,1}
Q

.̄

+
1

2
C.̄
.̄′.̄′′

{1,0}
η

.̄′

1

{0,1}
η

.̄′′

2 (119)

D1
{0,1}
η

.̄

2 = −
{1,1}
Q

.̄

+
1

2
C.̄
.̄′.̄′′

{0,1}
η

.̄′

2

{1,0}
η

.̄′′

1 (120)

D2
{0,1}
η

.̄

2 = 1

2
C.̄
.̄′.̄′′

{0,1}
η

.̄′

2

{0,1}
η

.̄′′

2 (121)

D1

{1,1}
Q

.̄

= 1

2
C.̄
.̄′.̄′′

{1,1}
Q

.̄′
{1,0}
η

.̄′′

1 + a.̄ D2

{1,1}
Q

.̄

= 1

2
C.̄
.̄′.̄′′

{1,1}
Q

.̄′
{0,1}
η

.̄′′

2 + b.̄ (122)

where
{0,0}
F can be any function of the variables zA,

(
zA2k+1

)
k=0,...,&, and the functions

a.̄ and b.̄ read as a.̄ = 1
8C

.̄

.̄1.̄′C
.̄′
.̄2.̄3

{0,1}
η

.̄1

2

{1,0}
η

.̄2

1

{1,0}
η

.̄3

1 , respectively, b.̄ =

− 1
8C

.̄

.̄1.̄′C
.̄′
.̄2.̄3

{1,0}
η

.̄1

1

{0,1}
η

.̄2

2

{0,1}
η

.̄3

2 . According to the above definitions, we find that the
operators (Da)a=1,2 anticommute weakly,

DaDb +DbDa ≈ 0 a, b = 1, 2 (123)

where the weak equality is referring to the first-class surface (105) and (106). Moreover, we
infer that the cohomology spaces of (Da)a=1,2 at form bidegree (0, 0) are given by the algebra
of physical observables corresponding to the irreducible first-class constraints (105) and (106).
Then, we infer that the exterior longitudinal bicomplex associated with the irreducible system
meets all the requirements of the Hamiltonian BRST–anti-BRST method.

If we extend the actions of (δa)a=1,2 to the ghosts through

δaη
.̄
1 = 0 δaη

.̄
2 = 0 δaQ

.̄ = 0 (124)

and set bires(η.̄1 ) = (0, 0), bires(η.̄2 ) = (0, 0), bires(Q.̄) = (0, 0), we rediscover the relations

δaδb + δbδa = 0 a, b = 1, 2 (125)

H0,0 (δa) = C∞ (
�̄
)

a = 1, 2 (126)

Hj,k (δa) = 0 j, k � 0 j + k 	= 0 a = 1, 2 (127)

which confirms that the irreducible Koszul–Tate differentials can be properly prolonged to the
entire BRST–anti-BRST generator algebra, i.e. such that to preserve the biresolution property.
Furthermore, the first-class character of the irreducible constraints (105) and (106) ensures that
the irreducible exterior longitudinal derivatives (Da)a=1,2 (and their accompanying bigrading,
biform) can also be extended to the antighosts in such a way as to become differentials modulo
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(δa)a=1,2. Consequently, we can consistently construct [5] the Hamiltonian BRST–anti-BRST
symmetry of the irreducible theory, realized via two anticommuting differentials (sa)a=1,2

sasb + sbsa = 0 a, b = 1, 2 (128)

that start like

sa = δa +Da + · · · a = 1, 2 (129)

and are bigraded accordingly with the new ghost bidegree bingh = (
ngh1, ngh2

)
, defined like

in (8). The generators of the superalgebra underlying the irreducible Hamiltonian BRST–
anti-BRST bicomplex are precisely (100) and the ghosts in (115), but bigraded in terms of
bingh. Then, the cohomology groups of (sa)a=1,2 at new ghost bidegree zero, H 0,0 (sa), will
be isomorphic to the algebra of physical observables corresponding to the irreducible system.

In the following we will denote by
(m,n)

F an object with bingh(F ) = (m, n).

4.2. Relation with the reducible Hamiltonian BRST–anti-BRST symmetry

Let us investigate now the relation between the Hamiltonian BRST–anti-BRST symmetries of
the reducible and irreducible systems. In view of this, we show that the physical observables
of the two theories coincide. Let F be an observable of the irreducible system. Consequently,
it satisfies the equations[

F, γa2k

] ≈ 0 k = 0, . . . , ' (130)

where the weak equality refers to the surface �̄, given by (112). Using the relations (109) and
(110), we then find that F also fulfils the equations[

F,Ga0

] = [
F, ν

a2j
a0

]
γa2j +

[
F, γa2j

]
ν
a2j
a0 ≈ 0 (131)[

F, πa2k+1

] = [
F, ν

a2j
a2k+1

]
γa2j +

[
F, γa2j

]
ν
a2j
a2k+1 ≈ 0 k = 0, . . . , & (132)

on this surface. So, every observable of the irreducible theory should verify equations (131)
and (132) on �̄. Now, we observe that this surface is equivalent to that described by the
equations

Ga0 ≈ 0 πa2k+1 ≈ 0 k = 0, . . . , &. (133)

Indeed, it is clear that if (133) takes place, then (105) and (106) hold. The converse results
from (109) and (110), which show that if (105) and (106) hold, then (133) are also valid. This
proves the equivalence between the first-class surfaces �̄ and (133). Consequently, we have
that every observable of the irreducible theory, which we found that verifies equations (131)
and (132) on �̄, will check these equations also on the surface (133). This means that every
observable of the irreducible system is an observable of the theory based on the first-class
constraints (133). Conversely, if F represents a physical observable of the system subject to
the constraints (133), then it should check the equations[

F,Ga0

] ≈ 0
[
F, πa2k+1

] ≈ 0 k = 0, . . . , & (134)

on the surface (133). Then, on behalf of (105) and (106) it follows that F satisfies the relations[
F, γa0

] = [
F,Ga0

]
+
[
F,Aa0

a1
]
πa1 +

[
F, πa1

]
Aa0

a1 ≈ 0 (135)

[
F, γa2k

] = [
F,Za2k−1

a2k

]
πa2k−1 +

[
F, πa2k−1

]
Za2k−1

a2k

+
[
F,Aa2k

a2k+1
]
πa2k+1 +

[
F, πa2k+1

]
Aa2k

a2k+1 ≈ 0 k = 1, . . . , ' (136)
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on the same surface. Recalling once again the equivalence between this surface and �̄, we find
that F will verify equations (135) and (136) also on �̄, and is therefore an observable of the
irreducible system. From the above discussion we conclude that the physical observables of
the irreducible theory coincide with those associated with the system subject to the first-class
constraints (133). Next, we show that the physical observables of the system possessing the
constraints (133) and those corresponding to the original reducible theory coincide. In this
light, we remark that the surface (133) can be inferred in a trivial manner from (1) by adding
the canonical pairs

(
ya2k+1 , πa2k+1

)
k=0,...,& and requiring that their momenta vanish. Thus, the

observables of the original redundant theory are unaffected by the introduction of the new
canonical pairs. In fact, the difference between an observable F of the system subject to the
constraints (133) and one of the original theory, F̄ , is of the type F − F̄ = ∑&

k=0 f
a2k+1πa2k+1 .

As any two observables that differ through a combination of first-class constraint functions
can be identified, we find that the physical observables of the initial theory coincide with those
of the system described by the constraints (133). So far, we proved that the observables of
the system with the constraints (133) coincide on the one hand with those of the irreducible
theory, and, on the other hand, with those of the original reducible one. In conclusion, the
physical observables associated with the irreducible system also coincide with those of the
starting on-shell reducible first-class theory. In turn, this result will have a strong impact at
the level of the BRST–anti-BRST analysis.

In the above we have shown that starting with an arbitrary on-shell reducible first-
class Hamiltonian system displaying the Hamiltonian BRST–anti-BRST symmetry (sRa)a=1,2

we can construct a corresponding irreducible first-class theory, whose BRST–anti-BRST
symmetry (sa)a=1,2 complies with the basic requirements of the Hamiltonian BRST–anti-
BRST formalism. The previous result on the physical observables induces that the zeroth-
order cohomological groups of the reducible and irreducible BRST and anti-BRST operators
are isomorphic

H 0,0 (sRa) � H 0,0 (sb) a, b = 1, 2. (137)

In addition, each symmetry is generated by a couple of anticommuting differentials

sRasRb + sRbsRa = 0 = sasb + sbsa a, b = 1, 2. (138)

Then, from the point of view of the fundamental equations of the BRST–anti-BRST formalism,
namely, the nilpotency and anticommutativity of the BRST and anti-BRST operators,
respectively, the isomorphism between the zeroth-order cohomological groups of the BRST and
anti-BRST differentials and the algebra of physical observables, it follows that it is permissible
to replace the Hamiltonian BRST–anti-BRST symmetry of the original L-stage reducible
system with that of the irreducible theory. Thus, we can substitute the path integral of the
reducible system in the Hamiltonian BRST–anti-BRST approach by that of the irreducible
theory.

However, it would be convenient to infer a covariant path integral with respect to the
irreducible system. The present phase-space coordinates may not ensure the covariance. For
instance, if we analyse the gauge transformations of the extended action of the irreducible
system, we remark that those corresponding to the Lagrange multipliers of the constraint
functions γa0 will not involve the term −Za0

a1
εa1 , which is present within the reducible context

with respect to the constraint functions Ga0 . For all known models, the presence of this term
is essential in arriving at some covariant gauge transformations at the Lagrangian level. For
this reason it is necessary to gain such a term also within the irreducible setting. Moreover,
it is possible that some of the newly added canonical variables lack covariant Lagrangian
gauge transformations. This signalizes that we need to add more phase-space variables to be
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constrained in an appropriate manner. In view of this, we introduce the additional bosonic
canonical pairs(

y(1)a2k+1 , π(1)a2k+1

) (
y(2)a2k+1 , π(2)a2k+1

)
k = 0, . . . , & (139)(

ya2k , πa2k

)
k = 1, . . . , ' (140)

subject to some constraints of the type

γ (1)a2k+1
≡ πa2k+1 − π(1)a2k+1

≈ 0 γ (2)a2k+1
≡ π(2)a2k+1

≈ 0 k = 0, . . . , & (141)

γ (1)a2k
≡ πa2k ≈ 0 k = 1, . . . , '. (142)

In this manner we do not affect in any way the properties of the irreducible theory as (141)
and (142) still form together with (105) and (106) an irreducible first-class set. The newly
added constraints imply the introduction of some supplementary ghosts and antighosts and the
extension of the action of the BRST and anti-BRST operators on them in the usual manner.
Then, there exists a consistent Hamiltonian BRST–anti-BRST symmetry with respect to the
new irreducible theory, described by the constraints (105), (106) and (141), (142). Now, if
we choose the first-class Hamiltonian with respect to the above first-class constraints in an
adequate manner, we can, in principle, generate a gauge algebra that leads to some covariant
Lagrangian gauge transformations. From (109) it results that the former set of constraints
in (141) reduces to π(1)a2k+1

≈ 0. Thus, we observe that the surface (105), (106) and (141),
(142) results in a trivial way from (105) and (106) by adding the canonical variables (139) and
(140), and demanding that their momenta vanish. Then, the difference between an observable
F of the new irreducible theory and one of the previous irreducible system, F̄ , is of the type
F−F̄ = ∑&

k=0 f
a2k+1π(1)a2k+1

+
∑&

k=0 g
a2k+1π(2)a2k+1

+
∑'

k=1 h
a2kπa2k , henceF and F̄ can be identified.

Therefore, the physical observables corresponding to the two irreducible systems coincide,
such that the supplementary constraints (141) and (142) do not afflict the previously established
equivalence with the physical observables of the original redundant theory. Consequently, we
can replace the Hamiltonian BRST–anti-BRST symmetry of the original reducible system with
that of the latter irreducible theory, and similarly with regard to the associated path integrals.

From now on, the Hamiltonian BRST–anti-BRST quantization of the irreducible theory
follows the standard lines. Defining a canonical action for (sa)a=1,2 in the usual way as
sa• = [•, 0a], with (0a)a=1,2 the BRST, respectively, anti-BRST charge, the nilpotency and
anticommutativity of sa imply that 0a should satisfy the equations

[0a,0b] = 0 a, b = 1, 2 (143)

where bingh (01) = (1, 0), bingh (02) = (0, 1). The existence of the solution to
equations (143) is then guaranteed by the biacyclicity of the irreducible Koszul–Tate bicomplex
at positive total resolution degrees. Once we have constructed the total BRST–anti-BRST
charge, 0T = 01 + 02, we pass to the construction of the BRST–anti-BRST-invariant
Hamiltonian, HT

B = H ′ + ‘more′, that satisfies bingh
(
HT
B

) = (0, 0),
[
HT
B ,0

T
] = 0, where

H ′ denotes the first-class Hamiltonian with respect to the constraints (105), (106) and (141),
(142). In order to fix the gauge, we have to choose a gauge-fixing fermionKT that implements
some irreducible gauge conditions and which is taken such that (s1 + s2)KT = [

KT ,0T
]

contains only terms of new ghost bigrading of the form (k, k). It has been shown in [5] that
under these circumstances the gauge-fixed HamiltonianHT

K = HT
B +

[
KT ,0T

]
is both BRST

and anti-BRST invariant and, moreover, produces a correct gauge-fixed action STK with respect
to the irreducible theory. In this way, we showed how a reducible first-class Hamiltonian
system can be approached along an irreducible BRST–anti-BRST procedure. This completes
our treatment.
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5. Example: the Freedman–Townsend model

The starting point is the Lagrangian action of the Freedman–Townsend model [31]

SL0
[
Aaµ, B

µν
a

] = 1

2

∫
d4x

(−Bµνa F a
µν + AaµA

µ
a

)
(144)

where Bµνa denotes a set of antisymmetric tensor fields, and the field strength of Aaµ reads as
Fa
µν = ∂µA

a
ν−∂νAaµ−f abcAbµAcν . The canonical analysis of this theory outputs the constraints

6
(1)a
i ≡ ε0ijkπ

jka ≈ 0 6
(2)a
i ≡ 1

2
ε0ijk

(
F jka − (

D[j
)a
b
πk]0b

)
≈ 0 (145)

χ
(1)a
i ≡ πa0i ≈ 0 χ

(2)a
i ≡ πai + Ba0i ≈ 0 χ(1)a ≡ π0

a ≈ 0 (146)

χ(2)a ≡ A0
a + f cabB

0i
c π

b
0i + (Di)

b
a π

i
b ≈ 0 (147)

and the first-class Hamiltonian

H =
∫

d3x

(
1

2
Bija

(
Fa
ij − (

D[i
)a
b
πbj ]0

)− 1

2
AaµA

µ
a

−Aa0
(
(Di)

b
a π

i
b + f cabB

0i
c π

b
0i

)− Aia
(
πa0i − ∂iπ

a
0

) )
. (148)

The symbol [ij ] appearing in (148) signifies the antisymmetry with respect to the indices
between brackets. In the above, the notations πµa and πaµν denote the momenta respectively
conjugated in the Poisson bracket to the fields Aaµ and Bµνa , while the covariant derivatives are
defined by (Di)

a
b = δab∂i + f abcA

c
i and (Di)

a
b = δ a

b ∂i − f abcA
c
i . By computing the Poisson

brackets between the constraint functions (145)–(147) we find that (145) are first-class and
(146) and (147) second-class. In addition, the functions6(2)a

i from (145) are on-shell first-stage
reducible (

(Di)ab + f abcπ
0ic
)
6
(2)b
i = −ε0ijkf abcχ

(1)b
i (Dj )

c
dχ

(1)d
k ≈ 0. (149)

In order to deal with the Hamiltonian BRST–anti-BRST formalism, it is useful to eliminate the
second-class constraints with the help of the Dirac bracket [30] built with respect to themselves.
By passing to the Dirac bracket, the constraints (146) and (147) can be regarded as strong
equalities with the help of which we can express Aa0, π0

a , πai and πa0i in terms of the remaining
fields and momenta, such that the independent ‘coordinates’ of the reduced phase-space are
Aai , B

0i
a , Bija and πaij . The non-vanishing Dirac brackets among the independent components

are expressed by[
B0i
a (x), A

b
j (y)

]∗
x0=y0 = δ b

a δ
i
j δ

3 (x − y) (150)

[
Bija (x), π

b
kl(y)

]∗
x0=y0 = 1

2
δ b
a δ

[i
kδ
j ]
lδ

3(x − y). (151)

In terms of the independent fields, the first-class constraints and first-class Hamiltonian take
the form

γ
(1)a
i ≡ ε0ijkπ

jka ≈ 0 G
(2)a
i ≡ 1

2
ε0ijkF

jka ≈ 0 (152)

H̃ = 1

2

∫
d3x

(
Bija F

a
ij − Aai A

i
a +

((
Di
)a
b
Bb0i

) (
Dj

) c

a
B0j
c

)
≡
∫

d3x h̃ (153)
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while the reducibility relations

(Di)baG
(2)a
i = 0 (154)

hold off-shell in this case. Moreover, the first-class constraints (152) remain Abelian in terms
of the Dirac bracket. In the following we work with the theory based on the reducible first-class
constraints (152) and on the first-class Hamiltonian (153), in the context of the Dirac bracket
defined by (150) and (151).

In conclusion, this is an example of first-stage reducible theory (L = 1), withGa0 → G
(2)a
i

and Za0
a1

→ (
Di
)b
a
. Acting like in subsection 3.1, we add the bosonic scalar pairs

(
ϕb, π

b
)

(that play the role of the variables
(
ya1 , πa1

)
) and take the matrix Aa0

a1 of the form

Aa0
a1 → −(Di)

a
b (155)

such that condition (53) is indeed satisfied. Consequently, from (63) and (155) we deduce the
irreducible first-class constraints associated with G(2)a

i ≈ 0 of the type

γa0 ≈ 0 → γ
(2)a
i ≡ 1

2
ε0ijkF

jka − (Di)
a
b π

b ≈ 0. (156)

Now, it is easy to see that the constraint functions in (156) and γ (1)ai from (152) are also
first-class and irreducible. In addition, as we mentioned at the end of the subsection 4.2 (see
relations (139) and (141)), we enlarge the phase-space with the supplementary bosonic scalar
pairs (

y(1)a1 , π(1)a1

) → (
ϕ(1)a , π

(1)a
) (

y(2)a1 , π(2)a1

) → (
ϕ(2)a , π

(2)a
)

(157)

subject to the constraints

γ (1)a1
≈ 0 → γ (1)a ≡ πa − π(1)a ≈ 0 γ (2)a1

≈ 0 → γ (2)a ≡ −π(2)a ≈ 0 (158)

whose presence does not in any way harm the irreducible theory, and, moreover, is helpful at
deriving a covariant form of the path integral corresponding to the irreducible model. So far,
we derived an irreducible system for the Freedman–Townsend model, based on the irreducible
first-class constraints

γ
(1)a
i ≡ ε0ijkπ

jka ≈ 0 γ
(2)a
i ≡ 1

2
ε0ijkF

jka − (Di)
a
b π

b ≈ 0 (159)

γ (1)a ≡ πa − π(1)a ≈ 0 γ (2)a ≡ −π(2)a ≈ 0. (160)

The first-class Hamiltonian with respect to the above constraints can be chosen of the type

H ′ ≡
∫

d3x h′ =
∫

d3x

(
1

2
Bija

(
Fa
ij + ε0ijk

(
Dk
)a
b
πb
)

−1

2
Aai A

i
a + ϕaπ

(2)a − ϕ(2)a (Di)
a
b

(
Di
)b
c
πc

+
1

2

(
(Di)

b
a B

0i
b − f cab

(
ϕcπ

b + ϕ(1)c π
b + ϕ(2)c π

(2)b
))2
)

(161)

where we employed the notation(
(Di)

b
a B

0i
b − f cab

(
ϕcπ

b + ϕ(1)c π
b + ϕ(2)c π

(2)b
))2

≡ (
(Di)

b
a B

0i
b − f cab

(
ϕcπ

b + ϕ(1)c π
b + ϕ(2)c π

(2)b
))

×((Dj
)a
d
Bd0j − f ade

(
πdϕe + πdϕ(1)e + π(2)dϕ(2)e

))
. (162)
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The irreducible first-class constraints are Abelian, while the remaining gauge algebra relations
read as[
γ
(1)a
i , H ′

]∗
= −γ (2)ai

[
γ
(2)a
i , H ′

]∗
= − (Di)

a
b γ

(2)b

+f abc
(
(Dj )bdB

d
0j − f bde(π

dϕe + πdϕ(1)e + π(2)dϕ(2)e)
)
γ
(2)c
i (163)

[
γ (1)a, H ′]∗ = γ (2)a [γ (2)a, H ′]∗ = (Di)abγ

(2)b
i

+f abc
(
(Dj )bdB

d
0j − f bde

(
πdϕe + πdϕ(1)e + π(2)dϕ(2)e

))
γ (2)c. (164)

As will be emphasized, the gauge algebra (163) and (164) ensures the Lorentz covariance of
the irreducible approach.

Next, we determine the path integral of the irreducible first-class theory described by
(159)–(161), associated with the Freedman–Townsend model, in the context of the Hamiltonian
BRST–anti-BRST formalism. In view of this, we introduce the generators of the BRST–anti-
BRST bicomplex(

(−1,0)
P

(1)a

1i ,
(0,−1)
P

(1)a

2i ,
(−1,0)
P

(1)a

1 ,
(0,−1)
P

(1)a

2

)
(165)

(
(−1,0)
P

(2)a

1i ,
(0,−1)
P

(2)a

2i ,
(−1,0)
P

(2)a

1 ,
(0,−1)
P

(2)a

2

)
(166)

(
(−1,−1)
λ

(1)a

i ,
(−1,−1)
λ

(1)a

,
(−1,−1)
λ

(2)a

i ,
(−1,−1)
λ

(2)a
)

(167)

(
(1,0)
η

(1)i

1a ,
(0,1)
η

(1)i

2a ,
(1,0)
η

(1)

1a ,
(0,1)
η

(1)

2a

)
(168)

(
(1,0)
η

(2)i

1a ,
(0,1)
η

(2)i

2a ,
(1,0)
η

(2)

1a ,
(0,1)
η

(2)

2a

)
(169)

(
(1,1)
Q

(1)i

a ,
(1,1)
Q

(1)

a ,
(1,1)
Q

(2)i

a ,
(1,1)
Q

(2)

a

)
(170)

graded according to the new ghost bidegree. The total BRST–anti-BRST charge has the form

0T =
∫

d3x
(
γ
(1)a
i

(
η
(1)i
1a + η(1)i2a

)
+ γ (2)ai

(
η
(2)i
1a + η(2)i2a

)
+ γ (1)a

(
η
(1)
1a + η(1)2a

)
+γ (2)a

(
η
(2)
1a + η(2)2a

)
+Q(1)i

a

(
P (1)a

1i − P (1)a
2i

)
+Q(2)i

a

(
P (2)a

1i − P (2)a
2i

)
+ Q(1)

a

(
P (1)a

1 − P (1)a
2

)
+Q(2)

a

(
P (2)a

1 − P (2)a
2

))
. (171)

The BRST–anti-BRST-invariant Hamiltonian corresponding to the first-class Hamiltonian
(161) is given by

HT
B = H ′ +

∫
d3x

(
η
(1)i
1a P (2)a

1i + η(1)i2a P (2)a
2i +Q(1)i

a λ
(2)a
i − η

(1)
1a P (2)a

1 − η
(1)
2a P (2)a

2

−Q(1)
a λ

(2)a + η(2)i1a (Di)
a
b P (2)b

1 + η(2)i2a (Di)
a
b P (2)b

2 +Q(2)i
a (Di)

a
b λ

(2)b

−η(2)1a

(
Di
)a
b
P (2)b

1i − η
(2)
2a

(
Di
)a
b
P (2)b

2i −Q(2)
a (D

i)abλ
(2)b
i



Hamiltonian BRST–anti-BRST symmetry 6921

−f cab
(
η
(2)
1c P (2)b

1 + η(2)2c P (2)b
2 +Q(2)

c λ
(2)b + η(2)i1c P (2)b

1i + η(2)i2c P (2)b
2i +Q(2)i

c λ
(2)b
i

)
×
((
Dj
)a
d
Bd0j − f ade

(
πdϕe + πdϕ(1)e + π(2)dϕ(2)e

))
+

1

2

(
f cab

(
η
(2)
1c P (2)b

1 + η(2)2c P (2)b
2 +Q(2)

c λ
(2)b

+ η
(2)i
1c P (2)b

1i + η(2)i2c P (2)b
2i +Q(2)i

c λ
(2)b
i

))2
)

(172)

where we use the notation(
f cab

(
η
(2)
1c P (2)b

1 + η(2)2c P (2)b
2 +Q(2)

c λ
(2)b + η(2)i1c P (2)b

1i + η(2)i2c P (2)b
2i +Q(2)i

c λ
(2)b
i

))2

≡ −f cab
(
η
(2)
1c P (2)b

1 + η(2)2c P (2)b
2 +Q(2)

c λ
(2)b

+ η(2)i1c P (2)b
1i + η(2)i2c P (2)b

2i +Q(2)i
c λ

(2)b
i

)
×f ade

(
η
(2)d
1 P (2)e

1 + η(2)d2 P (2)e
2 +Q(2)dλ(2)e

+ η(2)di1 P (2)e
1i + η(2)di2 P (2)e

2i +Q(2)diλ
(2)e
i

)
. (173)

In order to obtain the path integral of the irreducible model, we work with the gauge-fixing
fermion

KT =
∫

d3x

(
P (1)a

1i

(
ε0ijk∂jB0ka + ∂iϕ(1)a

)− 1

2
P (1)a

1 ε0ijk∂iBjka + λ(1)ai ∂iη
(1)
2a

+
1

2
∂[iλ

(1)a
j ]

(
D[i
) b

a
η
(2) j ]
2b + f abcε

0ijkπbη
(2)
2ia∂jλ

(1)c
k − λ(1)a∂iη

(1)i
2a

)
. (174)

If we compute the path integral with the help of the above gauge-fixing fermion, we find that
its exponent contains a quadratic term, namely,

exp

(
i
∫

d4x

(
−1

2

(
(Di)

b
a B

0i
b − f cab

(
ϕcπ

b + ϕ(1)c π
b + ϕ(2)c π

(2)b
)

−f cab
(
η
(2)
1c P (2)b

1 + η(2)2c P (2)b
2 +Q(2)

c λ
(2)b

+η(2)i1c P (2)b
1i + η(2)i2c P (2)b

2i +Q(2)i
c λ

(2)b
i

))2
))

(175)

that can be equivalently written in a linearized form by means of introducing a new field
through the Gaussian average∫

DHa
0 exp

(
i
∫

d4x

(
1

2
Ha

0H
0
a −Ha

0

(
(Di)

b
a B

0i
b

−f cab
(
ϕcπ

b + ϕ(1)c π
b + ϕ(2)c π

(2)b
)− f cab

(
η
(2)
1c P (2)b

1

+ η
(2)
2c P (2)b

2 +Q(2)
c λ

(2)b + η(2)i1c P (2)b
1i + η(2)i2c P (2)b

2i +Q(2)i
c λ

(2)b
i

))))
. (176)

Eliminating some of the auxiliary variables from the resulting gauge-fixed action on their
equations of motion, we finally arrive at

ZKT =
∫

DAaµDBµνa Dϕ(1)a DbaµDQ(2)µ
a Dλ(1)aµ Dη(2)µ1a DP (1)a

1µ Dη(2)µ2a DP (1)a
2µ exp

(
iSTK

)
(177)
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where

STK = SL0
[
Aaµ, B

µν
a

]
+
∫

d4x

(
baµ

(
1

2
εµνλρ∂νBλρa + ∂µϕ(1)a

)

−1

2
∂[µ λ

(1)a
ν]

(
D[µ

) b

a
Q
(2) ν]
b − (

∂µλ(1)aµ

)
(Dν)

b
a Q

(2)ν
b

+
1

2
∂[µP (1)a

1 ν]

(
D[µ

) b

a
η
(2) ν]
1b +

(
∂µP (1)a

1µ

)
(Dν)

b
a η

(2)ν
1b

+
1

2
∂[µP (1)a

2 ν]

(
D[µ

) b

a
η
(2) ν]
2b +

(
∂µP (1)a

2µ

)
(Dν)

b
a η

(2)ν
2b

)
(178)

with SL0
[
Aaµ, B

µν
a

]
the original action (144). In inferring the above covariant form of the path

integral we performed the identifications

Aaµ ≡ (
Ha

0 , A
a
i

)
baµ ≡ (

π(1)a, ε0ijkπ
jka
)

(179)

Q(2)µ
a ≡ (

Q(2)
a ,Q

(2)i
a

)
λ(1)aµ ≡

(
−λ(1)a, λ(1)ai

)
(180)

η
(2)µ
1a ≡

(
−η(2)1a , η

(2)i
1a

)
P (1)a

1µ ≡
(
P (1)a

1 ,P (1)a
1i

)
(181)

η
(2)µ
2a ≡

(
−η(2)2a , η

(2)i
2a

)
P (1)a

2µ ≡
(
P (1)a

2 ,P (1)a
2i

)
(182)

and, in addition, we adopted the notation

(D0)
b
a = δ b

a ∂0 − f bacH
c
0 . (183)

This ends the irreducible BRST–anti-BRST Hamiltonian treatment of the model under study.

6. Conclusion

To conclude with, in this paper we have exposed an irreducible Hamiltonian BRST–anti-BRST
method for quantizing reducible first-class systems. The key point of our approach consists in
the construction of an irreducible Koszul–Tate bicomplex associated with that of the reducible
theory, that reveals some irreducible first-class constraints. Moreover, the physical observables
of the starting reducible system and of the resulting irreducible one coincide. This result
together with the basic equations of the Hamiltonian BRST–anti-BRST method allow the
replacement of the Hamiltonian BRST–anti-BRST quantization of the initial reducible system
with that of the irreducible theory. The existence of the canonical generator of the irreducible
BRST–anti-BRST symmetry is provided by the biacyclicity of the irreducible Koszul–Tate
bicomplex, while the gauge-fixing procedure is facilitated by the enlargement of the phase-
space with the canonical pairs of the type (y, π). The theoretical part of the paper has been
exemplified on the Freedman–Townsend model.
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